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A field-enlarging transformation in chiral electrodynamics is performed. This 
introduces an additional gauge symmetry that is unitary and anomaly free and 
allows for comparison of different models discussed in the literature. The problem 
of superfluous degrees of freedom and their influence on quantization is discussed. 
Several so-called mysteries are explained from this point of view. 

Consistent quantization of an anomalous chiral gauge theory has long 
been problematic. In several simple cases, physically consistent and unitary 
models can be obtained (Jackiw and Rajaraman, 1985; Mitra, 1992; Siadkow- 
ski, 1992; Babelon et  al., 1986; Gomis and Paris, 1993; Braga and Montani, 
1991; De Jonghe et  al., 1993). But it still remains one of the most important 
open questions in field theory (Gomis and Paris, 1993; Abdelhafiz et al., 
1986; Stadkowski and Zralek, 1992). To solve the problem one usually adds 
in a more or less sophisticated way additional terms to the Lagrangian (Jackiw 
and Rajaraman, 1985; Mitra, 1992; Sladkowski, 1992; Babelon et al., 1986; 
Gomis and Paris, 1993; Braga and Montani, 1991; De Jonghe et  al., 1993; 
Faddeev and Shatashvili, 1986; Rajeev, 1986; Harada and Tsutsui, 1987). 
Another way is to introduce a nonlocal gauge-fixing or interaction term 
(Thompson and Zhang, 1987; Della Serva et  al., 1993; Demarco et  al., 1992). 
The resulting theory is then invariant with respect to a restricted gauge 
symmetry that is not anomalous. Here we apply a field-enlarging transforma- 
tion to analyze the problem (Sladkowski, 1992; Alfaro and Damgaard, 1990, 
1992; Hosoya and Kikkawa, 1975). This transformation introduces additional 
scalar degrees of freedom to the system and restores gauge symmetry, although 
not always the one one started with. It is then possible to show explicitly 
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the relations among various proposals and how the mechanism works. The 
conventional common part of the Lagrangian for the models discussed in the 
literature (chiral electrodynamics) is 

1 -[  e 
L = - ~  F ~ F ~  + t~ iOt'y~ - -~ (1 

This Lagrangian is invariant with respect to 

8A~ = 0 ~  

+ @)Awy~']t~ (1) 

(2a) 

e 
8+ = -iot ~ (1 - @)q~ (2b) 

8~ = i 2 ~ ( 1  + @) (2c) 

where oL is an arbitrary real function. Unfortunately, this gauge invariance is 
spoiled at the quantum level (Bell and Jackiw, 1969; Adler, 1969). Let 
us perform the following field-enlarging transformation (Stadkowsld, 1992; 
Alfaro and Damgaard, 1990, 1992; Hosoya and Kikkawa, 1975): 

a~. --+ aj,  - ,9~gp -- g~,(A, ':b) (3) 

in the Lagrangian (1). The transformed Lagrangian has the form 

1 -[ e ] 
L = -7~ F~F~v  + 0 i0~%. - -~ (1 + ~/5)(A~y~ - y~O~dO) O (4) 

Although this seems to be trivial at first sight, especially when the gauge 
field mass term and/or gauge-fixing term for the symmetry (2) are absent, 
the consequences are not (Stadkowski, 1992; Alfaro and Damgaard, 1990, 
1992; Hosoya and Kikkawa, 1975). The reason is that that quantization of 
a chiral fermion results in a nontrivial interaction that breaks the classical 
gauge symmetry (anomaly). It is also possible to redefine the fermion field via 

---> eft(~,@)~ 

Then the fermion field is not invariant with respect to (5). In fact, it is also 
possible to choose the function f so that the scalar field ~b is absent from the 
Lagrangian (4). But then one should worry about the Jacobian in the fermionic 
sector. We have chosen the simplest field redefinition so that everything is 
explicit! The transformation (6) introduces the following additional Abelian 
gauge symmetry into the theory (Stadkowski, 1992; Alfaro and Damgaard, 
1990, 1992; Hosoya and Kikkawa, 1975): 
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a+(x) = ~(x) (5a) ( )-' f ~g~CA, +) ~g..(A. ~b) ~A~(x) = - d~x d"y - ~ (x, y) 8d~ "if(z) = O~(x)  (5b) 

a~ = ~ = o (5c) 

where ~ is an arbitrary real function. To quantize this model we have to fix 
both gauge symmetries (Kugo and Ojima, 1979). 

Now we are prepared to analyze the problem of quantization of an 
anomalous chiral gauge theory. Thompson and Zhang (1987) and Della Serva 
et al. (1993) proposed to perform the nonlocal transformation 

1 
A~ ~ A g = A~ - O~-~ O~A ~ (6) 

in (1). The resulting theory 

1 e 
L = - ~  F ~ F ~  + iO~t~ - ~ (1 

is then invariant with respect to 

~A~ = O ~  

8 0 = ~ = ~a g = 0 

+ "/5)A~-,/~] t~ (7) 

(8a) 

(8b) 

This symmetry is anomaly free because the fermion field transforms in a 
trivial way (Fujikawa, 1980). It can be shown that such nonlocal theories 
are unitary and consistent (Thompson and Zhang, 1987; Della Serva et al., 
1993; Demarco etal., 1992). Unfortunately, these conclusions usually concern 
the additional gauge symmetry that has been introduced into the theory in 
question, but not the one we started with. The above model is still anomalous 
with respect to the original U(1) gauge symmetry. Such a Lagrangian might 
yield a physically acceptable theory, but this is far from being the rule (Jackiw 
and Rajaraman, 1985). We should get rid of the anomalous symmetry. The 
simplest solution is the following. Let us try to quantize the model given by 
equation (4). First, let us remove the original (classical!) gauge symmetry 
(2) by the nonlocal gauge-fixing condition 

1 
~b - -~ OwA ~ = 0 (9) 

The Lagrangian has the form (we omit the Faddeev-Popov ghost term) 
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1 e ] 
L = - ~  F ~ F ~  + iOr - ~ (1 + ~/5)(A~'y~ - ~0r ~ (10) 

where an auxiliary scalar field p has been introduced to exponentiate the 
functional Dirac 8-function that forces the gauge condition (9). Now we can 
perform the path integral over the scalar fields. This results in 

1 -[ e ( ~(1 ) )1  L =  - ~  F~Fr + 0 iO~'Y~ - ~ (1 + ~5) A ~  _ O~"y D O~A~ * 

(11) 

This is the Lagrangian given by (7) (Thompson and Zhang, 1987) with the 
Ag field written explicitly! The additional gauge symmetry (8) is the same 
as (5). Of course, other gauge conditions lead to different representations of 
the model. This shows that the proposal put forward in Thompson and Zhang 
(1987) and Della Serva et al. (1993) is to break the original symmetry (2) 
and to introduce a new one that is anomaly free (and in some sense trivial 
because it leaves fermions invariant). In fact, it can be shown that the transfor- 
mation (6) chooses the covariant gauge 

O~A ~ = 0 (12) 

So we should not speak of a transformation but rather of a gauge-fixing 
condition. More sophisticated gauge conditions breaking (5) would result in 
more complicated Lagrangians. 

Jackiw and Rajaraman (1985), in their seminal paper, discovered that 
the two-dimensional chiral Schwinger model yields a consistent and unitary, 
although anomalous and not gauge-invariant, theory. Following this, several 
other consistent anomalous models were put forward. They have the following 
general form: 

, -[ e ] 
L = --~ Fr + 0 i O ~  - ~ (1 + "yS)A~/~ 0 

+ 1 Bz _ BO~A ~ + O_(O~c + mZK(qb ' A) + •P(A) (13) 
2 

where B, c, and P denote the auxiliary field that linearizes the gauge condition, 
the appropriate ghosts, and the Pontryagin term (Jackiw, 1984), respectively. 
Several forms of the K term have been discussed in the literature (Stadkowski, 
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1'992; Jackiw and Rajaraman, 1985; Mitra, 1992; Babelon et  al., 1986; Gomis 
and Paris, 1993; Braga and Montani, 1991; De Jonghe et  al., 1993; Faddeev 
and Shatashvili, 1986; Rajeev, 1986; Harada and Tsutsui, 1987; Thompson 
and Zhang, 1987). In the (1 + 1)-dimensional case, it is possible to calculate 
the functional integral over the fermions (Jackiw, 1984) in (1). Then one can 
apply the transformation (3) (Stadkowski, 1992). This leads (after "reintroduc- 
tion" of fermions and addition of the gauge-fixing and ghost terms) to 

8 2 
m z = ~ (a - 1) (14a) 

where a is the quantization (regularization) ambiguity parameter (Jackiw and 
Rajaraman, 1985) and 

1 
K(qb, A )  = -~ O~r - O~d~A ~ (14b) 

This form corresponds to a theory that possesses the additional gauge symme- 
try (5). This additional symmetry is the unexpected gauge invariance discov- 
ered by Harada and Tsutsui (1987) after adding the Wess-Zumino term to 
the chiral electrodynamic Lagrangian. This form of the K term has been 
recognized by Della Serva et  al. (1993) as the one corresponding to the 
model discussed by Jackiw and Rajaraman (1985). This is not so, because 
the additional symmetry is absent in their model (Stadkowski, 1992). One 
has to break the additional symmetry in order to get the Jackiw and Rajaraman 
model (Stadkowski, 1992). Faddeev and Shatashvili (1986) chose K = 0. 
This corresponds to the a = 1 case of (14a). Path integration over the scalar 
field d) leads to the condition P = 0, which ensures the invariance with 
respect to (5). The form proposed by Rajeev (1986), 

1 
K(qb, A )  = -~ (O~d? - A~)(O~+ - a ~) (15) 

1 ~2A a ~  has an additional term g~ ~ that breaks the symmetry (8). It should be 
interpreted as a mass term for the gauge boson [Stttckelbeg formalism (Stad- 
kowsld, 1993)]. Finally, Thompson and Zhang proposed to take 

K(4a, A) = 0r~p(O~b - A ~) (16) 

where P is an auxiliary scalar field. This model is equivalent to the ordinary 
chiral Schwinger model (Jackiw and Rajaraman, 1985; Stadkowski, 1992). 
This can be seen by integrating over the scalar fields. Note that this differs 
from (4) (Thompson and Zhang, 1987) in that the additional symmetry is 
broken. This shows once more that for any value of a the original gauge 
symmetry is lost in the quantization process (Jackiw and Rajaraman, 1985; 
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Jackiw, 1984). The above analysis shows that the consistency of the quantiza- 
tion of the discussed models has common roots that have been discovered 
by Jackiw and Rajaraman (1985) because the differences in the K terms can 
be regarded as different gauge-fixing terms for the symmetry (5). Note that 
the discussed Lagrangians can be obtained also in more sophisticated ways 
(Babelon et al., 1986; Gomis and Paris, 1993; Braga and Montani, 1991; De 
Jonghe et al., 1993; Alfaro and Damgaard, 1993). The important fact is that 
the additional symmetry (5) reveals itself in every case, although it might 
not be obvious, e.g., in the field-antifield formalism it is fixed in the due 
process (Gomis and Paris, 1993; Sladkowski, 1993; Alfaro and Damgaard, 
1993; Fujiwara et al., 1990). 

An important question arises: Can afield-enlarging transformation help 
to construct a nontrivial anomaly-free theory ? The answer may be affirmative. 
It has been observed that a theory can possess a BRST symmetry (Becci et 
al., 1974; Tyutin, 1975) that is not a symmetry of the Lagrangian but only 
of the functional integral. This means that several symmetries, if "broken 
correctly," may result in an anomaly-free subsymmetry (cancellation of the 
anomalous terms in the fermionic determinant). To shed more light on the 
problem, let us consider the BRST symmetries that correspond to (2) and 
(5). The general formula for a BRST current associated to the fields that 
appear in (13) is (Della Serva et al., 1993; Kugo and Ojima, 1979; Becci et 
al., 1974; Tyutin, 1975) 

OP 
JBRST = F~Ov c - qb ~ Ovc + eJ~c + BO~c (17) 

OK 
- - -  ~BRST+ 

00~b 

where JL denotes the left fermion current. Its divergence is 

0JBRsT = eOJLc -- PgBRSTd~ -- OK O~c + ~ 0~gB~sr~b (18) 

so that if K is gauge invariant and gBRSTqb = C, J~RST is conserved (0JBRsT 
= 0) (Thompson and Zhang, 1987). It is obvious that this condition is 
fulfilled by the K-terms given by (15) and (16). This conserved BRST charge 
corresponds to the diagonal part of (2) and (5) (o~ = N). The form of the K- 
term given by (14) (and its special case K = 0) defines a model that is 
gauge invariant with respect to (5) and the appropriate BRST current is also 
conserved. Unfortunately, the above phenomenon seems to require additional 
fields or/and nonlocal terms. It is also obscure whether, and to what extent, 
it can work in higher than (1 + 1)-dimensional spacetime. The Batalin- 
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Vilkovisky or the field-enlarging [Sttickelberg (Stadkowski, 1993)] formalism 
discussed here should be helpful in analyzing this problem. Especially, the 
role of the additional symmetry should be explored. This problem is under 
investigation. Recently, similar ideas have been discussed in the context of 
W2-gravity (De Jonghe et al., 1993). 
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